Wiener Indices and Polynomials of Five Graph Operators

نویسندگان

  • Weigen Yan
  • Bo-Yin Yang
  • Yeong-Nan Yeh
چکیده

The sum of distances between all vertices pairs in a connected graph is known as the Wiener Index. It is the earliest of the indices that correlates well with many physicochemical properties of organic compounds and as such has been well-studied over the last quarter of a century. A q-analogue of this index, termed the Wiener Polynomial by Hosoya but also known today as the Hosoya Polynomial, extends this concept by trying to capture the complete distribution of distances in the graph. The mathematicians have studied several operators on a connected graph in which we see a subdivision of the edges. Herein we show how the Wiener Index of a graph changes with these operations, and extend the results to Wiener Polynomials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some results on vertex-edge Wiener polynomials and indices of graphs

The vertex-edge Wiener polynomials of a simple connected graph are defined based on the distances between vertices and edges of that graph. The first derivative of these polynomials at one are called the vertex-edge Wiener indices. In this paper, we express some basic properties of the first and second vertex-edge Wiener polynomials of simple connected graphs and compare the first and second ve...

متن کامل

Hosoya polynomials of random benzenoid chains

Let $G$ be a molecular graph with vertex set $V(G)$, $d_G(u, v)$ the topological distance between vertices $u$ and $v$ in $G$. The Hosoya polynomial $H(G, x)$ of $G$ is a polynomial $sumlimits_{{u, v}subseteq V(G)}x^{d_G(u, v)}$ in variable $x$. In this paper, we obtain an explicit analytical expression for the expected value of the Hosoya polynomial of a random benzenoid chain with $n$ hexagon...

متن کامل

On the edge reverse Wiener indices of TUC4C8(S) nanotubes

The edge versions of reverse Wiener indices were introduced by Mahmiani et al. very recently. In this paper, we find their relation with ordinary (vertex) Wiener index in some graphs. Also, we compute them for trees and TUC4C8(s) naotubes.

متن کامل

Automatic graph construction of periodic open tubulene ((5,6,7)3) and computation of its Wiener, PI, and Szeged indices

The mathematical properties of nano molecules are an interesting branch of nanoscience for researches nowadays. The periodic open single wall tubulene is one of the nano molecules which is built up from two caps and a distancing nanotube/neck. We discuss how to automatically construct the graph of this molecule and plot the graph by spring layout algorithm in graphviz and netwrokx packages. The...

متن کامل

On edge detour index polynomials

The edge detour index polynomials were recently introduced for computing the edge detour indices. In this paper we find relations among edge detour polynomials for the 2-dimensional graph of $TUC_4C_8(S)$ in a Euclidean plane and $TUC4C8(S)$ nanotorus.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007